

FLUOROPOLYMER COATING

RESISTANCE LIST AND TECHNICAL DATA

COATING TECHNOLOGY TO MEET THE HIGHEST EXPECTATIONS

Rudolf Gutbrod GmbH in Swabian Dettingen/ Erms sets new standards in innovative coating technology. The company is leading in Europe as a processor of fluorinated polymers.

The enterprise was founded in 1964 and is a pioneer in Germany in surface coating technology with fluoropolymers. And as a licensee of well-known raw material manufacturers to some of Europe's top addresses, as far as functional coatings with non-stick effect, low friction, chemical

protection and corrosion protection are concerned. State-of-the-art technology is ensured through continuous development work.

Raw material procurement is undertaken on a worldwide basis. International and permanent exchange of ideas will ensure that the highest possible quality will be maintained in solving the different requirements of our customers also in the future.

EDLON™ PFA - Table 1

The data is based on long-term experience and the results from the development department and is not binding. In case of doubt, it will be necessary to establish suitability by experiment. This may be particularly so with combinations of media that can react differently on the coating than the individual media themselves.

EDLON™ PFA - Table 1 (continued)

Chemical		Chemical	Chemical
Ferrous Chlor Ferrous Sulfa Flueboric Aci	te	L Lacquers and Laquer Soly Lactic Acid Lard	N Naphtha Naphthalene Nickel Chloride
Flursilic Acid		Latex	Nickel Nitrate
Formaldehyd	е	Lead Acetate	Nickel Sulphate
Formic Acid		Lead Nitrate	Nitric Acid
Freon Fuel Oils		Lead Sulfamate	Nitrobenzene
Furan		Lime-Sulpher Lime	Nitrogen Nitromethane
Futural		Lime Linoleic Acid	Nitrous Acid
		Linseed Oil	Nitrous Oxide
Gallic Acid		Lithium Chloride	N-octane
Gas Natural		Lithium Hydroxide	
Gasoline		LPG Propane	O Oil, Animal
Gelatin		Lubricating Oil	Oil, Crude
Glucose Glue		Lye	Oil, Mineral
Glycerine		M. Magazasiyas Bisylfata	Oil, Vegetable Oleic Acid
Glycol		M Magnesium Bisulfate Magnesium Carbonate	Oralic Acid
Glycolic Acid		Magnesium Chloride	Oxygen
,		Magnesium Hydroxide	Ozone
Helium		Magnesium Nitrate	
Hectane		Magnesium Sulfate	P Palmitic Acid
Hexamine		Maleic Acid	Praffin
Hexane	id (Dotroloum)	Malic Acid	Pentane
Hydraulic Flu	d (Petroleum)	Manganese Chloride	Perchloroethylene
Helium	d (Synthetic)	Manganese Sulfate Mercuric Chloride	Perchloric Acid Petroleum
Hydrobromic	Acid	Mercuric Cyanide	Petroleum Ether
Hydrochloric	Acid	Mercurous Nitrate	Phenol Sulphonic Acid
Hydrocyanic		Mercury	Phosphoric Acid
Hydrofluoric /		Methane	Phosphorous Pentachloride
Hydrofluorosi		Methyl Acetate	Phosphorous Trichloride
Hydrofluosilio Hxdrogen Ch		Methyl Acetone	Photografic Solutions
Hydrogen Cy		Methyl Alcohol	Phthalic Acid
Hydrogen Flu		Methyl Amine Methyl Bromide	Phthalic Anhydride Piaric Acid
Hydrogen Ga		Methyl Cellosolve	Planting Solutions
Hydrogen Pe	roxide	Methyl Chloride	Potassium Acetate
Hydrogen Su		Methyl Ethyl Ketone	Potassium Aluminium Sulphate
Hexanol Tertia	ary	Methylene Chloride	Potassium Bicarbonate
Hydrazine	. A a: a!	Milk	Potassium Bichromate
Hypochlorous	S ACIO	Mineral Oil	Potassium Bromide
ISO Butyl Alc	ohol	Mixed Acids	Potassium Carbonate Potassium Chlorate
ISO Octane	0.101	Molasses Monochloro Benzene	Potassium Chloride
ISO Propyl Ad	cetate	Monochloroacetic Acid	Potassium Chromate
ISO Propyl Et		Monochlorodifluro Methane	Potassium Cyanide
-		Monoethylamine	Potassium Dichromate
Jet Fuel		Morpholine	Potassium Ferricyanide
. Kana		Motor Oil	Potassium Ferrocyanide
Kerosene		Mustard	Potassium Hydrate
Ketones			Potassium Hydroxide
			Potassium Hypochlorite
			Potassium Iodide-iodine

EDLONTM **PFA** – **Table 1** (continued)

Ch	emical	C	hemical	Ch	emical
	Potassium Nitrate		Sodium Ferricyanide		Toluene
	Potassium Oxalate		Sodium Fluoride		Tomato Juice
	Potassium Permanganate		Sodium Hydroxide		Transformer Oil
	Potassium Silicide		Sodium Hypochlorite		Tri Butyl Citrate
	Potassium Sulphate		Sodium Hyposulfite		Tri Butyl Phosphate
	Potassium Sulphide		Sodium Metaphosphate		Trichloroacetic Acid
	Potassium Sulphite		Sodium Metasilicate		Trichloroethane
	Propane		Sodium Nitrate		Trichloroethylene
	Propyl Acetate		Sodium Nitrite		Trichloromonofluoroe
			Sodium Perborate		
	Propyl Alcohol				Trichloropropane
	Propylene		Sodium Peroxide		Trichlorotrifluoroethan
	Propylene Chlorohydrin		Sodium Phosphates		Tricresylphosphate
	Propylene Glycol		Sodium Silicate		Triethanolamine
	Propylene Oxide		Sodium Sulfate		Triethyl Phosphate
	Pydraul		Sodium Sulfide		Triethylamine
	Pyridine		Sodium Sulfite		Triethylene Glycol
	Pyrogallic Acid		Sodium Tetraborate		Triphenyl Phospite
	Pyroligneous Acid		Sodium Thiosulfate		Tripropylene Gylcol
	, 3		Soy Bean Oil		Trisodium Phosphate
3	Quinine Bisulfate		Stannic Chloride		Tung Oil
_	Quinine Sulfate		Stannous Chloride		Turpentine
	Gairline Gallate		Starch		rurperiure
3	Resorcinol			U	Lindaevi Aleehol
1			Stearic Acid	0	Undecyl Alcohol
	Rosin		Stoddard Solvent		Urea
			Styrene		Uric Acid
5	Salicylaldehyde		Sugar Juice		Urine
	Salicylic Acid		Sulfinol		
	Salt Brine		Sulfolane	V	Varnish
	Sea Water		Sulfur		Vinegar
	Sewage		Sulfur Chloride		Vinyl Acetate
	Shellac		Sulfur Dioxide		Vinyl Chloride
	Silicone Oil		Sulfur Molten		Vinylidine Chloride
	Silver Bromide		Sodium Trioxide		···· , ······
	Silver Chloride		Sulfuric Acid	W	Water, Acid Mine
	Silver Cyanide		Sulfuric Acid Fuming Oleum	"	Water, Salt
	Silver Nitrate		Sulfurous Acid		Wax
	Skydrol		Sulphate Black Liquor		Whiskey
	Soap Solutions		Sulphate Green Liquor		White Liquor
	Sodium Acetate		Sulphite Liquor		White Spirit
	Sodium Acid Sulfate	l _			Wine
	Sodium Aluminate	T	Tall Oil		Wood Pulp
	Sodium Aluminium Sulfate		Tallow		
	Sodium Benzoate		Tannic Acid	X	Xylene
	Sodium Bicarbonate		Tannic Liquor		•
	Sodium Bichromate		Tar Oil	Z	Zinc Carbonate
	Sodium Bisulfate		Tartaric Acid		Zinc Chloride
	Sodium Bisulfite		Tetra Ethyl Lead		Zinc Cyanide
	Sodium Borate		Tetrachloroacetic Acid		Zinc Nitrate
	Sodium Bromide				Zinc Stearate
			Tetrachloroethane		
	Sodium Carbonate		Tetrachloroethylene		Zinc Sulphate
	Sodium Chlorate		Tetrahydrofuran		
	Sodium Chloride		Tetrahydro Naphthal		
	Sodium Chromate		Tetraphosphoric Acid		
	Sodium Citrate		Thionyl Chloride		
	Sodium Cyanide		Tin Tetrachloride		
	Sodium Dichromate		Titanium Tetrachloride		
	Soulum Dichromate		manium retrachionae		

E-CTFE Chemical Resistance List - Table 2

The following chemical resistance list contains our recommendations at different application temperatures. The data is based on long-term experience and the results from the development department and is not binding. In case of doubt, it will be necessary to establish suitability by experiment. This may be particularly so with combinations of media that can react differently on the coating than the individual media themselves.

E-CTFE chemical resistance data according to ASTM D543 after 30 days of continuous exposure

Chemical resistance data

		Change in Properties				
Chemical Name	Test Temp. °C	Tensile Strength	Elongation at Break	Weight Gain %	Color	
Acetic Acid	20	I	I	0.3	1	
Acetic Acid	50	I	I	2.4	1	
Acetic Acid	100	I	I	2.7	1	
Acetone	20	I	I	2.4	1	
Acetone	50	I	I	2.7	1	
Acetone Cyanohydrin	50	I	I	0.0	1	
Acetonitrile	50	I	I	1.3	1	
Acetophenone	50	I	I	1.8	1	
Acrylic Acid	100	I	I	0.4	1	
Aluminum Chloride 50%	100	I	I	0.0	2	
Ammonium Hydroxide 30%	100	I	I	1.0	1	
Amyl Acetate, 99% *	50	I	I	4.7	1	
Aniline	50	I	I	0.3	1	
Aniline	100	I	I	2.5	3	
Benzaldehyde	20	I	I	0.2	1	
Benzaldehyde	50	I	I	2.7	2	
Benzyl Chloride, 97% *	50	I	I	2.3	1	

CHANGE IN

TENSILE PROPERTIES: I - insignificant A - reduced 25-50% B - reduced 50-75% C - reduced >75%

COLOR CHANGE: 1 - no change 2 - any shade of tan 3 - brown or black

* - tested for 28 days, ** - tested for 43 days, all others tested at 30 days. Values are comparable

E-CTFE chemical resistance data according to ASTM D543 after 30 days of continuous exposure

		Change in Properties				
Chemical Name	Test Temp. °C	Tensile Strength	Elongation at Break	Weight Gain %	Color	
Benzyl Alcohol	121	I	I	1.6	1	
n-Butanol	121	I	I	1.9	1	
Butylaldehyde *	50	I	I	2.8	1	
Butyl Lactate *	50	I	I	0.5	1	
Butyl Phthalate	100	I	I	2.4	1	
Calcium Hydroxide, 0.5%	140	I	I	0.3	2	
Cellosolve Acetate	20	I	I	0.3	1	
Cellosolve Acetate	100	I	I	4.6	1	
Chlorine Water, sat.	121	I	I	3.5	2	
Chloroacetic Acid, 50%	100	I	I	0.3	3	
Chlorobenzene	20	I	I	1.4	1	
Chlorobenzene	50	I	I	4.8	1	
Chlorosulfonic acid	50	I	I	4.3	3	
a-Chlorotoluene	20	I	I	0.1	1	
a-Chlorotoluene	50	I	I	2.9	2	
Chromic Acid, 30%	100	I	I	0.0	2	
Cyclohexylamine *	50	I	I	2.3	3	
o-Cresol	50	I	I	0.3	1	

LEGEND

CHANGE IN

TENSILE PROPERTIES: I - insignificant A - reduced 25-50% B - reduced 50-75% C - reduced >75%

COLOR CHANGE: 1 - no change 2 - any shade of tan 3 - brown or black

* - tested for 28 days, ** - tested for 43 days, all others tested at 30 days. Values are comparable

E-CTFE chemical resistance data according to ASTM D543 after 30 days of continuous exposure

	Change in Properties					
Chemical Name	Test Temp. °C	Tensile Strength	Elongation at Break	Weight Gain %	Color	
o-Cresol	100	I	I	3.3	1	
Cyclohexanone	20	I	I	0.2	1	
Cyclohexanone	50	I	I	2.1	1	
Diacetone Alcohol	50	I	I	0.1	1	
Dibutyl Sebacate	100	I	I	2.4	1	
Dibutyl Phthalate *	50	I	I	0.1	1	
Diethyl Phthalate *	50	I	I	0.8	1	
o-Dichlorobenzene	20	I	I	0.2	1	
o-Dichlorobenzene	50	I	I	5.6	1	
Dichloroethane	20	I	I	4.7	1	
1,2-Dichloroethylene	20	I	I	1.8	1	
Dichloropropane	20	I	I	0.6	1	
Dichloropropane	50	I	I	5.2	1	
a,a-Dichlorotoluene	20	I	I	0.1	1	
N,N-Diethylethanolamine *	50	I	I	0.2	1	
Diethylhydroxyamine, 85%	30	I	I	0.0	1	
Diethylene glycol butyl ether acetate *	50	I	I	0.5	1	
Diethyleneglycolmonobutyl ether*	50	I	I	0.2	1	

LEGEND

CHANGE IN

TENSILE PROPERTIES: I - insignificant A - reduced 25-50% B - reduced 50-75% C - reduced >75%

COLOR CHANGE: 1 - no change 2 - any shade of tan 3 - brown or black

* - tested for 28 days, ** - tested for 43 days, all others tested at 30 days. Values are comparable

E-CTFE chemical resistance data according to ASTM D543 after 30 days of continuous exposure

		Change in Properties				
Chemical Name	Test Temp. °C	Tensile Strength	Elongation at Break	Weight Gain %	Color	
Diethylene Triamine	50	I	I	0.2	2	
Diisobutyl Ketone *	50	I	I	1.1	1	
Diisopropyl Ketone	20	I	I	0.2	1	
Diisopropyl Ketone	100	I	I	6.5	1	
N,N-Dimethyl Acetamide	20	I	I	0.3	1	
N,N-Dimethyl Acetamide	50	I	I	3.8	2	
N,N-Dimethyldodecylamine	75	I	I	0.5	1	
N,N-Dimethyl Formamide	20	I	I	0.3	1	
N,N-Dimethyl Formamide	50	I	I	2.9	2	
Dimethyl Phthalate	100	I	I	2.5	2	
Dimethyl Sulfoxide	100	I	I	1.9	1	
Dimethylamine	20	I	I	1.9	1	
Dimethylamine, 40%	50	I	I	0.4	1	
Dioctyl Phthalate	50	I	I	0.2	1	
1,4-Dioxane	50	I	I	4.7	1	
Dipropylene glycol methyl ether *	50	I	I	0.2	1	
Ethanol	100	I	I	0.8	1	

LEGEND

CHANGE IN

TENSILE PROPERTIES: I - insignificant A - reduced 25-50% B - reduced 50-75% C - reduced >75%

COLOR CHANGE: 1 - no change 2 - any shade of tan 3 - brown or black

* - tested for 28 days, ** - tested for 43 days, all others tested at 30 days. Values are comparable

E-CTFE chemical resistance data according to ASTM D543 after 30 days of continuous exposure

		Change in Properties				
Chemical Name	Test Temp. °C	Tensile Strength	Elongation at Break	Weight Gain %	Color	
Ethyl Acetate	50	I	I	3.4	1	
Ethyl Formate	20	I	I	2.9	1	
Ethylene Glycol	100	I	I	0.4	1	
Ethylenediamine	20	I	I	0.3	2	
Ferric Chloride, 55%	100	I	I	-0.1	1	
2- Ethoxyethanol, 99% *	50	I	I	0.4	1	
Fluoroboric Acid, 10%	100	I	I	0.1	1	
Formaldehyde, 37%	80	I	I	0.6	1	
Formic Acid, 85%	80	I	I	0.4	1	
Furfural	50	I	I	1.5	2	
n-Hexane **	30	I	I	0.3	1	
Hydrochloric acid, 37%	100	I	I	0.7	3	
Hydrofluoric acid, 49%	100	I	I	0.2	2	
Hydrogen Peroxide, 60%	30	I	I	0.3	1	
4-Hydroxybenzene sulfonic acid *	70	I	I	0.1	2	
Isophorone *	50	I	I	0.5	1	
Isopropyl Alcohol **	80	I	I	1.5	1	
Lithium Hydroxide, 11.8%	100	I	I	0.0	1	

LEGEND

CHANGE IN

TENSILE PROPERTIES: I - insignificant A - reduced 25-50% B - reduced 50-75% C - reduced >75%

COLOR CHANGE: 1 - no change 2 - any shade of tan 3 - brown or black

* - tested for 28 days , ** - tested for 43 days , all others tested at 30 days. Values are comparable

E-CTFE chemical resistance data according to ASTM D543 after 30 days of continuous exposure

		Change in Properties					
Chemical Name	Test Temp. °C	Tensile Strength	Elongation at Break	Weight Gain %	Color		
Methane Sulfuric Acid, 50%	66	I	I	0.0	1		
Methanol	50	I	I	0.4	1		
Methyl Cellosolve	100	I	I	1.7	1		
Methyl Ethyl Ketone	20	I	I	2.4	1		
Methyl Formate	20	I	I	2.6	1		
Methyl Isobutyl Ketone	20	I	I	0.4	1		
Methyl Isobutyl Ketone	50	I	I	3.6	1		
Methyl Methacrylate	20	I	I	2.3	1		
1-Methyl-2-Pyrrolidinone	20	I	I	0.3	1		
N-Methylpyrrolidinone	20	I	I	1.5	1		
Methylene Chloride	20	I	I	3.9	1		
Nitric Acid, 10%	121	I	I	0.4	1		
Nitric Acid, 50%	50	I	I	0.1	1		
Nitric Acid, 90%	71	I	I	2.3	2		
Nonyl Phenol *	50	I	I	0.1	1		
2-Octanol	50	I	I	0.2	1		
Pentyl Acetate	20	I	I	0.5	1		
Pentyl Acetate	50	I	I	3.9	1		
Phenol	50	I	I	0.1	1		

LEGEND

CHANGE IN

TENSILE PROPERTIES: I - insignificant A - reduced 25-50% B - reduced 50-75% C - reduced >75%

COLOR CHANGE: 1 - no change 2 - any shade of tan 3 - brown or black

* - tested for 28 days , ** - tested for 43 days , all others tested at 30 days. Values are comparable

E-CTFE chemical resistance data according to ASTM D543 after 30 days of continuous exposure

	Change in Properties					
Chemical Name	Test Temp. °C	Tensile Strength	Elongation at Break	Weight Gain %	Color	
Phosphoric Acid, 85%	140	I	I	-0.1	2	
Phosphorous Oxychloride	20	I	I	2.7	1	
Potassium Carbonate, 53.2%	140	I	I	-0.1	2	
Potassium Hydroxide, 50%	121	I	I	-0.1	2	
Propanol *	50	I	I	0.2	1	
Propyl Acetate	20	I	I	1.7	1	
Propyl Acetate	50	I	I	3.6	1	
Sodium Carbonate, 33.7%	100	I	I	0.0	1	
Sodium Chlorite, 45.9%	100	I	I	0.1	1	
Sodium Hydrosulfide, 50%	140	I	I	0.0	2	
Sodium Hydroxide, 50%	132	I	I	-0.2	2	
Sodium Hypochlorite, 12.5-15.5%	45	I	I	0.1	1	
Sodium Hypochlorite, 5%	121	I	I	0.1	1	
Sulfuric Acid, 98%	121	I	I	0.7	3	
Tetrachloroethylene	20	I	I	2.0	1	
Tetramethyl Ammonium Hydroxide	100	I	I	0.6	2	
p-Toluenesulfonic Acid (sol. sat.) *	70	I	I	0.0	1	

LEGEND

CHANGE IN

TENSILE PROPERTIES: I - insignificant A - reduced 25-50% B - reduced 50-75% C - reduced >75%

COLOR CHANGE: 1 - no change 2 - any shade of tan 3 - brown or black

* - tested for 28 days , ** - tested for 43 days , all others tested at 30 days. Values are comparable

E-CTFE chemical resistance data according to ASTM D543 after 30 days of continuous exposure

			Change in 1	Properties	
Chemical Name	Test Temp. °C	Tensile Strength	Elongation at Break	Weight Gain %	Color
Toluene	20	I	I	0.7	1
Tributyl Phosphate *	50	I	I	0.1	1
Trichlorobenzene	50	I	I	4.0	1
1,1,1-Trichloroethylene	20	I	I	0.3	1
Triethylamine *	50	I	I	0.9	2
Tricresyl Phosphate	100	I	I	0.3	1
Triethyl Phosphate	50	I	I	0.2	1
Triethylene Tetramine	50	I	I	0.0	2
Vinyl Acetate	50	I	I	3.1	1
Xylene	20	I	I	0.5	1
Xylene	50	I	I	3.4	1

LEGEND

CHANGE IN

TENSILE PROPERTIES: I - insignificant A - reduced 25-50% B - reduced 50-75% C - reduced >75%

COLOR CHANGE: 1 - no change 2 - any shade of tan 3 - brown or black

 \ast - tested for 28 days , $\ast\ast$ - tested for 43 days , all others tested at 30 days. Values are comparable

Table 3
Chemical compatibility – taking DuPont Teflon® ETFE as an example (based on tests of representative materials and engineering judgment)

The data is based on long-term experience and the results from the development department and is not binding.

Chemical		Maximum Use Temperature nical °F °C		Cł	nemical	Maximum Use Temperature °F °C	
_							
Α	Acetaldehyde	200	95		Barium Sulfate	300	150
	Acetamide	250	120		Barium Sulfide	300	150
	Acetic Acid (50%)	250	120		Battery Acid	250	120
	Acetic Acid (Glacial)	230	110		Benzaldehyde	212	100
	Acetic Anhydride	300	150		Benzene	212	100
	Acetone	150	65		Benzene Sulfonic Acid	212	100
	Acetone (50% H ₂ O)	150	65		Benzoic Acid	275	135
	Acetonitrile	150	65		Benzoyl Chloride	150	65
		300				300	150
	Acetophenone		150		Benzyl Alcohol		
	Acetylchloride	150	65		Benzyl Chloride	300	150
	Acetylene	250	120		Bismuth Carbonate	300	150
	Acetylene Tetrabromide	300	150		Black Liquor	300	150
	Acetylene Tetrachloride	300	150		Bleach (12.5% Cl ₂)	212	100
	Acrylonitrile	150	65		Borax `	300	150
	Adipic Acid	275	135		Boric Acid	300	150
	Air	300	150		Brine	300	150
	Allyl Alcohol	212	100		Bromic Acid	250	120
	Allyl Chloride	212	100		Bromine (Dry)	150	65
	Aluminum Ammonium Sulfate	300	150		Bromine Water (10%)	230	110
	Aluminum Chloride	300	150		mono-Bromobenzene	212	100
	Aluminum Fluoride	300	150		Bromoform	212	100
	Aluminum Hydroxide	300	150		m-Bromotoluene	212	100
	Aluminum Nitrate	300	150		Butadiene	250	120
	Aluminum Oxychloride	300	150		Butane	300	150
		300				275	
	Aluminum Potassium Sulfate		150		Butanediol		135
	Amino Acids (H ₂ O)	212	100		Butyl Acetate	230	110
	Ammonia (Anhydrous)	300	150		Butyl Acrylate	230	110
	Ammonia (Aqueous 30%)	230	110		<u>n</u> -Butyl Alcohol	300	150
	Ammonium Bifluoride	300	150		sec-Butyl Alcohol	300	150
	Ammonium Bromide (50%)	275	135		tert-Butyl Alcohol	300	150
	Ammonium Carbonate	300	150		n-Butylamine	120	50
	Ammonium Chloride	300	150		sec-Butylamine	120	50
	Ammonium Dichromate	275	135		tert-Butylamine	120	50
	Ammonium Fluoride	300	150		di-n-Butyl Amine	230	110
	Ammonium Hydroxide	300	150		tri- <u>n</u> -Butyl Amine	230	110
	Ammonium Nitrate (Conc.)	230	110		Butylene	300	150
	Ammonium Perchlorate	275	135		Butyl Bromide	300	150
	Ammonium Persulfate	150	65		Butyl Chloride	300	150
	Ammonium Phosphate	300	150		n-Butyl Mercaptan	300	150
	Ammonium Sulfate	300	150		Butyl Phenol	230	110
	Ammonium Sulfide	300	150		Butyl Phthalate	150	65
	Ammonium Thiocyanate	300	150			212	100
					Butyraldehyde		
	Amyl Acetate	250	120		Butyric Acid	250	120
	Amyl Alcohol	300	150	C	Calcium Bisulfate	300	150
	Amyl Chloride	300	150	•	Calcium Bisulfide	300	150
	Aniline	230	110		Calcium Carbonate	300	150
	Aniline Hydrochloride (10%)	150	65				
	Anthraquinone	275	135		Calcium Chlorate	300	150
	Anthraquinone-Sulfonic Acid	275 275	135		Calcium Chloride	300	150
					Calcium Hydroxide	300	150
	Antimony Trichloride	212	100		Calcium Hypochlorite	300	150
	Aqua Regia	212	100	1	Calcium Nitrate	300	150
	Arsenic Acid	300	150	1	Calcium Oxide	275	135
3	Barium Carbonate	300	150	1	Calcium Sulfate	300	150
ر				1			
	Barium Chloride	300	150	1	Calcium Sulfide	250	120
	Barium Hydroxide	300	150	1	Caprylic Acid	212	100

Table 3 (continued)

Chemical compatibility – taking DuPont Teflon® ETFE as an example (based on tests of representative materials and engineering judgment)

The data is based on long-term experience and the results from the development department and is not binding.

Chemical	Maximu Temper °F		Chemical	Maximum Use Temperature °F °C	
Carbon Dioxide (Dry) Carbon Dioxide (Wet) Carbon Dioxide (Wet) Carbon Disulfide Carbon Monoxide Carbon Tetrachloride Carbonic Acid Castor Oil Caustic Potash (10 and 50%) Caustic Soda (10 and 50%) Calstic Soda (10 and 50%) Cellosolve® Chloral Hydrate Chlorinated Brine Chlorinated Phenol Chlorine (Dry) Chlorine (Wet) Chlorine Dioxide Chloroacetic Acid (50% H₂O) Chlorobenzene Chlorobenzyl Chloride Chloroform Chlorobenzyl Chloride Chlorosulphonic Acid Chromic Acid (50%) Chromic Chloride Chromyl Chloride Clorox Bleach Solution (5-1/2% Cl₂) Coal Gas Copper Cloride Copper Cyanide Copper Sulfate Cresol Cresylic Acid Crotonaldehyde Crude Oil Cyclohexane Cyclohexanol Cyclohexanone Dextrin Diacetone Alcohol 1,2-Dibromopropane Dibutyl Phthalate Dichloroacetic Acid o-Dichlorobenzene Dichlorobenzene Dichloroethylene	300 300 150 300 150 300 212 212 212 250 250 212 250 212 150 75 150 212 212 212 212 212 212 212 212 212 21	150 150 65 150 65 150 150 100 100 120 100 120 100 120 100 65 100 65 100 150 150 150 150 150 150 150 150 15	Diglycolic Acid Diisobutyl Ketone Diisobutylene Dimethyl Formamide Dimethyl Phthalate Dimethyl Sulfate Dimethyl Sulfoxide Dimethylamine Dimethylamiline Dioctyl Phthalate p-Dioxane Diphenyl Ether Divinyl Benzene E Epichlorhydrin Ethyl Acetate Ethyl Acrylate Ethyl Alcohol Ethyl Chloride Ethyl Cyanoacetate Ethyl Cyanoacetate Ethylamine Ethylene Bromide Ethylene Chloride Ethylene Chloride Ethylene Oxide F Fatty Acids Ferric Chloride (50% in H ₂ O) Ferric Hydroxide Ferrous Chloride Ferrous Chloride Ferrous Nitrate Ferrous Sulfate Ferrous Sulfate Fluorine (Gaseous) Fluoroboric Acid Fluosilicic Acid Formaldehyde (37% in H ₂ O) Formic Acid FREON® 11 FREON® 12 FREON® 22 Fuel Oil Fumaric Acid Furane	212 230 275 250 212 150 212 120 275 150 150 150 212 300 300 212 212 150 100 300 300 212 212 150 100 300 300 230 300 230 300 230 300 230 300 230 300 230 300 230 300 230 300 230 300 230 300 230 300 30	100 110 135 120 100 65 100 135 65 80 65 65 100 150 150 150 150 150 150 150 150 15
Dichloroethylene Dichloropropionic Acid Diesel Fuels Diethyl Benzene Diethyl Cellosolve Diethyl Ether Diethylamine Diethylene Triamine	150 150 300 275 300 212 230 212	65 150 135 150 100 110	Furfural G Gallic Acid Gas—Manufactured Gas—Natural Gasoline—Leaded Gasoline—Sour Gasoline—Unleaded	212 300 300 300 300 300 300	100 100 150 150 150 150 150

Table 3
Chemical compatibility – taking DuPont Teflon® ETFE as an example (based on tests of representative materials and engineering judgment)

The data is based on long-term experience and the results from the development department and is not binding.

Ch	emical	Maximu Tempei °F		Chemical	Maximu Tempei °F	
Glycerol Glycol Glycolic Acid		300 275 250	150 135 120	Mercuric Cyanide Mercuric Nitrate Mercury	275 275 275	135 135 135
Н	Heptane Hexane	300 300	150 150 150	Methacrylic Acid Methane	200 250	95 120
	Hydrazine Hydrazine Dihydrochloride	100 125	40 50	Methane Sulfonic Acid (50%) Methyl Alcohol <u>n</u> -Methylaniline	230 300 250	110 150 120
	Hydriodic Acid Hydrobromic Acid (50%) Hydrochloric Acid (20%)	300 300 300	150 150 150	Methyl Benzoate Methyl Bromide	250 300	120 150
	Hydrochloric Acid (Conc.) Hydrochloric Acid (Gas) Hydrocyanic Acid	300 300 300	150 150 150	Methyl Cellosolve® Methyl Chloride Methyl Chloroform	300 200 150	150 95 65
	Hydrofluoric Acid (35%) Hydrofluoric Acid (70%)	275 250	135 120	Methyl Chloromethyl Ether Methyl Cyanoacetate Methyl Ethyl Ketone	175 175 230	80 80 110
	Hydrofluoric Acid (100%) Hydrofluorosilicic Acid Hydrogen	230 300 300	110 150 150	Methyl Isobutyl Ketone Methyl Methacrylate	230 175	110 80
	Hydrogen Cyanide Hydrogen Peroxide (30%)	300 250	150 120	Methyl Salicylate Methyl Sulfuric Acid Methyl Trichlorosilane	200 212 200	95 100 95
	Hydrogen Peroxide (90%) Hydrogen Phosphide Hydrogen Sulfide (Dry)	150 150 300	65 65 150	Methylene Bromide Methylene Chloride	212 212	100 100
	Hydrogen Sulfide (Wet) Hydroquinone Hypochlorous Acid	300 250 300	150 120 150	Methylene lodide Mineral Oil Monochlorobenzene	212 300 230	100 150 110
I	Inert Gases Iodine (Dry)	300 230	150 110	Monoethanolamine Morpholine N Naphtha	150 150 300	65 65 150
	lodine (Wet) lodoform Isobutyl Alcohol	230 230 275	110 110 135	Naphtha Naphthalene Nickel Chloride Nickel Nitrate	300 300 300 300	150 150 150 150
J	Isopropylamine Jet Fuel—JP4 Jet Fuel—JP5	120 230 230	50 110 110	Nickel Sulfate Nicotine	300 212	150 100
L	Lactic Acid Lard Oil	250 300	120 150	Nicotinic Acid Nitric Acid (50%) Nitric Acid (Conc. 70%)	250 221 248	120 105 120
	Lauric Acid Lauryl Chloride Lauryl Sulfate	250 275 250	120 135 120	Nitric Acid Sulfuric Acid (50/50) Nitrobenzene Nitrogen Dioxide	212 300 212	100 150 100
	Lead Acetate Linoleic Acid	300 275	150 135	Nitrogen Gas Nitromethane Nitrous Acid	300 212 212	150 100 100
	Linseed Oil Lithium Bromide (Saturated) Lithium Hydroxide Lubricating Oil	300 250 300 300	150 120 150 150	O Octane Octene	300 300	150 150
M	Magnesium Carbonate Magnesium Chloride	300 300	150 150	Oleic Acid Oleum Oxalic Acid	275 120 230	135 50 110
	Magnesium Hydroxide Magnesium Nitrate Magnesium Sulfate	300 300 300	150 150 150	Oxygen Ozone (<1% in Air) P Palmitic Acid	300 212 275	150 100 135
	Maleic Acid Maleic Anhydride Malic Acid	275 200 275	135 95 135	Perchlorethylene Perchloric Acid (10%) Perchloric Acid (72%)	275 275 230 150	135 135 110 65
	Mercuric Chloride	275	135	Petrolatum	300	150

Table 3 (continued)

Chemical compatibility – taking DuPont Teflon® ETFE as an example (based on tests of representative materials and engineering judgment)

The data is based on long-term experience and the results from the development department and is not binding.

Chemical	Maximu Tempe °F		Chemical	Maximum Use Temperature °F °C	
Petroleum	300	150	Silicon Tetrachloride	250	120
Petroleum Ether	212	100	Silver Chloride	300	150
Phenol (10%)	230	110	Silver Cyanide	300	150
Phenol (100%)	212	100	Silver Nitrate	300	150
Phenolsulfonic Acid	212	100	Sodium Acetate	300	150
Phenylhydrazine	212	100	Sodium Benzene-Sulfonate	300	150
Phenylhydrazine Hydrochloride	212	100	Sodium Benzoate	300	150
o-Phenylphenol	212	100	Sodium Bicarbonate	300	150
Phosgene	212	100	Sodium Bisulfate	300	150
Phosphoric Acid (30%)	300	150	Sodium Bisulfite	300	150
Phosphoric Acid (85%)	275	135	Sodium Borate	212	100
Phosphorus Oxychloride	221	100	Sodium Bromide	300	150
Phosphorus Pentachloride	212	100	Sodium Carbonate	300	150
Phosphorus Pentoxide	230	110	Sodium Chlorate	300	150
Phosphorus Trichloride	250	120	Sodium Chloride	300	150
Phthalic Acid	212	100	Sodium Chromate	300	150
Phthalic Anhydride	212	100	Sodium Cyanide	300	150
Picric Acid	125	50	Sodium Dichromate (Alkaline)	212	100
Polyvinyl Acetate	300	150	Sodium Ferricyanide	300	150
Polyvinyl Alcohol	300	150	Sodium Ferrocyanide	300	150
Potassium Aluminum Chloride	300	150	Sodium Fluoride	300	150
Potassium Aluminum Sulfate (50%)	300	150	Sodium Glutamate	275	135
Potassium Bicarbonate	300	150	Sodium Hydroxide (10%)	230	110
Potassium Borate	300	150	Sodium Hydroxide (50%)	230	110
Potassium Bromate	300	150	Sodium Hypochlorite	300	150
Potassium Bromide	300	150	Sodium Hyposulfite	300	150
Potassium Carbonate	300	150	Sodium Iodide	300	150
Potassium Chlorate	300	150	Sodium Lignosulfonate	300	150
Potassium Chloride	300	150	Sodium Metasilicate	300	150
Potassium Chromate	300	150	Sodium Nitrate	300	150
Potassium Cyanide	300	150	Sodium Nitrite	300	150
Potassium Dichromate	300	150	Sodium Perborate	212	100
Potassium Ferrocyanide	300	150	Sodium Perchlorate	150	65
Potassium Fluoride	300	150	Sodium Peroxide	300	150
Potassium Hydroxide (50%)	212	100	Sodium Persulfate	175	80
Potassium Hypochlorite	275	135	Sodium Phosphate	300	150
Potassium Nitrate	300	150	Sodium Silicate	300	150
Potassium Perborate	275	135	Sodium Silicofluoride	300	150
Potassium Perchlorate	212	100	Sodium Sulfate	300	150
Potassium Permanganate	300	150	Sodium Sulfide	300	150
Potassium Persulfate	150	65	Sodium Sulfite	300	150
Potassium Sulfate	300	150	Sodium Thiosulfate	300	150
Potassium Sulfide	300	150	Sorbic Acid	275	135
Propane	275	135	Sour Crude Oil	300	150
Propionic Acid	212	100	Stannic Chloride	300	150
Propyl Alcohol	300	150	Stannous Chloride	300	150
Propylene Dibromide	212	100	Stannous Fluoride	250	120
Propylene Dichloride	212	100	Stearic Acid	300	150
Propylene Glycol Methyl Ether	212	100	Stoddard's Solvent	275	135
Propylene Oxide	150	65	Styrene Monomer	212	100
Pyridine	150	65	Succinic Acid	275	135
Pyrogallol	150	65	Sulfamic Acid	212	100
S Salicylaldehyde	212	100	Sulfur (Molten)	250	120
Salicyladerryde Salicylic Acid	250	120	Sulfur Dioxide	230	110
Salt Brine	300	150	Sulfur Trioxide (Liquid)	75	25
Sea Water	300	150	Sulfuric Acid (60%)	300	150
Source: www.dupont.com Budolf Gutbrod G					tinued)

Table 3
Chemical compatibility – taking DuPont Teflon® ETFE as an example (based on tests of representative materials and engineering judgment)

The data is based on long-term experience and the results from the development department and is not binding.

Chemical	Maximu Tempe °F		Chemical		Maximum Use Temperature °F °C	
Sulfuric Acid (Conc.) Sulfuric Acid (Fuming—Oleum) Sulfurous Acid Tall Oil Tannic Acid Tartaric Acid 2,3,4,6-Tetrachlorophenol Tetraethyl Lead Tetrahydrofuran Tetramethyl Ammonium Hydroxide (50%) Thionyl Chloride Tin Tetrachloride Titanium Dioxide Titanium Tetrachloride Toluene Tributyl Phosphate Trichloracetic Acid Trichloroethylene Trichloromethane 2,4,5-Trichlorophenol Triethylamine Trisodium Phosphate Turpentine	300 120 230 300 275 275 212 300 212 212 230 300 212 250 150 212 275 212 230 275 212 230	150 50 110 150 135 135 100 150 100 100 110 120 65 100 135 100 135 100 135	U UDMH-Hydrazine (50/50) Urea (50% H ₂ O) V Varsol Vinyl Acetate Vinyl Chloride (Monomer) W Water Water Sewage Wax X Xylene Z Zinc Acetate Zinc Chloride Zinc Hydrosulfite (10%) Zinc Nitrate Zinc Sulfate Zinc Sulfate Zinc Sulfide PLATING SOLUTIONS Brass Cadmium Chrome Copper Gold	120 275 275 275 150 300 275 300 250 250 300 250 300 300 300 300 275 275 275 275	50 135 135 135 65 150 120 120 150 150 150 150 150 135 135 135 135	

Source: www.dupont.com. Rudolf Gutbrod GmbH has been a DuPont licensee in Germany since 1967

(continued)

Representative Compatibility Data

The test results shown in Table 4 represent the tensile strength, elongation and weight changes after exposures at indicated temperatures. The test results confirm the chemical resistant properties of ETFE.

Table 4
Actual laboratory tests on chemical compatibility – taking DuPont Teflon® ETFE as an example - with representative chemicals

The data is based on long-term experience and the results from the development department and is not binding.

	Po	iling oint	Test Temperature			Retained Properties—% Tensile Weight		
Chemical	°F	°C	°F	°C	Days	Strength	Elong.	Gain
Acid/Anhydrides								
Acetic Acid (Glacial)	244	118	244	118	7	82	80	3.4
Acetic Anhydride	282	139	282	139	7	100	100	0
Trichloroacetic Acid	384	196	212	100	7	90	70	0
Aliphatic Hydrocarbons								
Mineral Oil	_	_	356	180	7	90	60	0
Naphtha	_	_	212	100	7	100	100	0.5
Aromatic Hydrocarbons								
Benzene	176	80	176	80	7	100	100	0
Toluene	230	110	230	110	7	_	_	_
Functional Aromatics								
O-Cresol	376	191	356	180	7	100	100	0
Amines								
Aniline	365	185	248	120	7	81	99	2.7
Aniline	365	185	248	120	30	93	82	_
Aniline	365	185	356	180	7	95	90	_
N,N-Dimethylaniline	374	190	248	120	7	82	97	_
N-Methylaniline	383	195	248	120	7	85	95	_
N-Methylaniline	383	195	248	120	30	100	100	_
n-Butylamine	172	78	172	78	7	71	73	4.4
Di-n-Butylamine	318	159	248	120	7	81	96	_
Di-n-Butylamine	318	159	248	120	30	100	100	_
Di-n-Butylamine	318	159	320	160	7	55	75	_
Tri-n-Butylamine	421	216	248	120	7	81	80	_
Tri-n-Butylamine	421	216	248	120	30	100	100	_
Pyridine	240	116	240	116	7	100	100	1.5
Chlorinated Solvents								
Carbon Tetrachloride	172	78	172	78	7	90	80	4.5
Chloroform	144	62	142	61	7	85	100	4.0
Dichloroethylene	170	77	90	32	7	95	100	2.8
FREON® 113	115	46	115	46	7	100	100	0.8
Methylene Chloride	104	40	104	40	7	85	85	0
Ethers								
Tetrahydrofuran	151	66	151	66	7	86	93	3.5
Aldehyde/Ketones								
Acetone	132	56	132	56	7	80	83	4.1
Acetophenone	394	201	356	180	7	80	80	1.5
Cyclohexanone	312	156	312	156	7	90	85	0
Methyl Ethyl Ketone	176	80	176	80	7	100	100	0

Source: www.dupont.com. Rudolf Gutbrod GmbH has been a DuPont licensee in Germany since 1967

(continued)

Table 4 (continued)

Actual laboratory tests on chemical compatibility – taking DuPont Teflon® ETFE as an example - with representative chemicals

The data is based on long-term experience and the results from the development department and is not binding.

		ling pint	Te Tempe			Retained Properties—% Tensile Weig		
Chemical	°F	°C	°F	°C	Days	Strength	Elong.	Gain
Esters					_			
n-Butyl Acetate Ethyl Acetate	260 170	127 77	260 170	127 77	7 7	80 85	60 60	0 0
Polymer Solvents								
Dimethylformamide Dimethylformamide	309 309	154 154	194 248	90 120	7 7	100 76	100 92	1.5 5.5
Dimethylsulfoxide	373	189	194	90	7	95	90	1.5
Other Organics								
Benzoyl Chloride	387	197	248	120	7	94	95	_
Benzoyl Chloride	387	197	248	120	30	100	100	_
Benzyl Alcohol Decalin	401 374	205 190	248 248	120 120	7 7	97 89	90 95	_
Phthaloyl Chloride	529	276	248	120	30	100	100	_
Acids								
Aqua Regia	_	_	194	90	*	93	89	0.2
Chromic	257	125	257	125	7	66	25	_
Hydrobromic (Conc)	257	125	257	125	7	100	100	_
Hydrochloric (Conc)	223	106	73	23	7	100	90	0
Hydrochloric (Conc)	223	106	223	106	7	96	100	0.1
Hydrofluoric (Conc)	_	_	73	23	7	97	95	0.1
Nitric—25%	212 221	100 105	212 221	100 105	14 14	100 87	100 81	_
Nitric—50% Nitric—70% (Conc)	248	120	73	23	105	100	100	— 0.5
Nitric—70% (Conc)	248	120	140	60	53	100	100	U.5 —
Nitric—70% (Conc)	248	120	248	120	2	72	91	_
Nitric—70% (Conc)	248	120	248	120	3	58	5	_
Nitric-70% (Conc)	248	120	248	120	7	0	0	_
Phosphoric (Conc)	_	_	212	100	7	_	_	_
Phosphoric (Conc)	_	_	248	120	7	94	93	0
Sulfuric (Conc)	_	_	212	100	7	100	100	0
Sulfuric (Conc)	_	_	248	120	7	98	95	0
Sulfuric (Conc)		_	302	150	*	98	90	0
Halogens Bromine (Anhy)	138	59	73	23	7	90	90	1.2
Bromine (Anhy)	138	59 59	135	23 57	7	99	100	1.Z —
Bromine (Anhy)	138	59	135	57	30	94	93	3.4
Chlorine (Anhy)	_	_	248	120	7	85	84	7
Bases								
Ammonium Hydroxide Potassium Hydroxide	_	_	150	66	7	97	97	0
(20%)	_	_	212	100	7	100	100	0
Sodium Hydroxide (50%)			248	120	7	94	80	0.2
Peroxides			240	120	1	34	60	0.2
Hydrogen Peroxide								
(30%)	_	_	73	23	7	99	98	0

(continued)

NOTES: Change in properties -15% is considered insignificant. Samples were 10–15 mil microtensile bars. TS/E and wt. gain determined within 24 hours after removal from exposure media.

^{*}Exposed for 6 hours.

Table 4 (continued)

Actual laboratory tests on chemical compatibility – taking DuPont Teflon® ETFE as an example - with representative chemicals

The data is based on long-term experience and the results from the development department and is not binding.

	Boiling Point		Test Temperature			Retained Properties — % Tensile Weight		
Chemical	°F	°C	°F	°C	Days	Strength	Elong.	Gain
Salt-Metal Etchants								
Ferric Chloride								
(25%)	220	104	212	100	7	95	95	0
Zinc Chloride								
(25%)	220	104	212	100	7	100	100	0
Other Inorganics								
Phosphoric Oxychloride	220	104	220	104	7	100	100	_
Phosphoric Trichloride	167	75	167	75	7	100	98	_
Silicon Tetrachloride	140	60	140	60	7	100	100	_
Sulfuryl Chloride	115	68	155	68	7	86	100	8
Water	212	100	212	100	7	100	100	0
Miscellaneous								
A-20 Stripper Solution	_	_	284	140	7	90	90	_
Aerosafe	_	_	300	149	7	92	93	3.9
Skydrol	_	_	300	149	7	100	95	3.0

^{*}Exposed for 6 hours.

NOTES: Change in properties -15% is considered insignificant. Samples were 10–15 mil microtensile bars. TS/E and wt. gain determined within 24 hours after removal from exposure media.

PERFECT SOLUTION FOR SINTER LINING PROJECTS

ChemResist puts a new emphasis in this case using a process and computer-controlled lining technology according to the rotational sinter lining process. This procedure creates a seamless lining with virtually uniform coating thickness.

High-quality partially and fully fluorinated materials, such as ETFE und PFA, and the high performance polymers PE, PP and PA, are used by ChemResist. ETFE and PE are also available as electrically conducting versions. ChemResist can also supply with FDA-conform certification upon request. This also applies to electrically conductive specifications.

Partly and fully fluorinated polymers offer universal and permanent resistance to acids, alkalis, solvents and chlorides. ChemResist possesses an extremely smooth and anti-adhesive surface and thus prevents bacterial adherence or growth. In the manufacture of highly pure products (chip industry, high purity grade chemicals) ChemResist prevents impaired quality from foreign substances or dissolved metallic ions.

FLEXIBLE AND ECONOMICAL

If special parts are to be lined, ChemResist possesses distinct advantages both from an economic as well as a qualitative point of view. The process can be adapted flexibly to the circumstances or requirements (preparation of tooling is not required). Even rigid construction specifications can be solved economically with ChemResist.

Mechanical preliminary work, as well as the use of adhesives, can be avoided. Chemical resistance and high temperature resilience remain unaffected. The permanent and homogeneous lamination to the substrate means new and interesting perspectives in use under vacuum.

More detailed information are available in our ChemResist brochure and on the internet at www.gutbrod-ptfe.de/produkte/chemresist.

RUDOLF GUTBROD GmbH

Im Schwöllbogen 10 72581 Dettingen/Erms Germany

Tel.: +49(0)7123-9735-0 Fax: +49(0)7123-9735-30

www.gutbrod-ptfe.de
info@gutbrod-ptfe.de