

ChemResist ROTATIONAL-LINING

RESISTANCE LIST

COATING TECHNOLOGY TO MEET THE HIGHEST EXPECTATIONS

Rudolf Gutbrod GmbH in Swabian Dettingen/ Erms sets new standards in innovative coating technology. The company is leading in Europe as a processor of fluorinated polymers.

The enterprise was founded in 1964 and is a pioneer in Germany in surface coating technology with fluoropolymers. And as a licensee of wellknown raw material manufacturers to some of Europe's top addresses, as far as functional coatings with non-stick effect, low friction, chemical

protection and corrosion protection are concerned. State-of-the-art technology is ensured through continuous development work.

Raw material procurement is undertaken on a worldwide basis. International and permanent exchange of ideas will ensure that the highest possible quality will be maintained in solving the different requirements of our customers also in the future.

PERFECT SOLUTION FOR SINTER LINING PROJECTS

ChemResist puts a new emphasis in this case using a process and computer-controlled lining technology according to the rotational sinter lining process. This procedure creates a seamless lining with virtually uniform coating thickness.

High-quality partially and fully fluorinated materials, such as ETFE und PFA, and the high performance polymers PE, PP and PA, are used by ChemResist. ETFE and PE are also available as electrically conducting versions. ChemResist can also supply with FDA-conform certification upon request. This also applies to electrically conductive specifications. Partly and fully fluorinated polymers offer universal and permanent resistance to acids, alkalis, solvents and chlorides. ChemResist possesses an extremely smooth and anti-adhesive surface and thus prevents bacterial adherence or growth. In the manufacture of highly pure products (chip industry, high purity grade chemicals) ChemResist prevents impaired quality from foreign substances or dissolved metallic ions.

FLEXIBLE AND ECONOMICAL

If special parts are to be lined, ChemResist possesses distinct advantages both from an economic as well as a qualitative point of view. The process can be adapted flexibly to the circumstances or requirements (preparation of tooling is not required). Even rigid construction specifications can be solved economically with ChemResist.

Mechanical preliminary work, as well as the use of adhesives, can be avoided. Chemical resistance and high temperature resilience remain unaffected. The permanent and homogeneous lamination to the substrate means new and interesting perspectives in use under vacuum. More detailed information are available in our ChemResist brochure and on the internet at www.gutbrod-ptfe.de/produkte/chemresist.

Table I

Chemical compatibility – taking DuPont Teflon[®] ETFE as an example (based on tests of representative materials and engineering judgment)

The data is based on long-term experience and the results from the development department and is not binding.

Ch	emical	Maximum Use Temperature °F °C			Maximum Use Temperature °F °C		
^	A		0.5		000	150	
Α	Acetaldehyde	200	95	Barium Sulfate	300	150	
		250	120	Barium Sulfide	300	150	
	Acetic Acid (50%)	250	120	Battery Acid	250	120	
	Acetic Acid (Glacial)	230	110	Benzaldehyde	212	100	
	Acetic Anhydride	300	150	Benzene	212	100	
	Acetone	150	65	Benzene Sulfonic Acid	212	100	
	Acetone (50% H ₂ O)	150	65	Benzoic Acid	275	135	
	Acetonitrile	150	65	Benzoyl Chloride	150	65	
	Acetophenone	300	150	Benzyl Alcohol	300	150	
	Acetylchloride	150	65	Benzyl Chloride	300	150	
	Acetylene	250	120	Bismuth Carbonate	300	150	
	Acetylene Tetrabromide	300	150	Black Liquor	300	150	
	Acetylene Tetrachloride	300	150	Bleach (12.5% Cl ₂)	212	100	
	Acrylonitrile	150	65	Borax	300	150	
	Adipic Acid	275	135	Boric Acid	300	150	
	Air	300	150	Brine	300	150	
	Allyl Alcohol	212	100	Bromic Acid	250	120	
	Allyl Chloride	212	100	Bromine (Dry)	150	65	
	Aluminum Ammonium Sulfate	300	150	Bromine Water (10%)	230	110	
	Aluminum Chloride	300	150	mono-Bromobenzene	212	100	
	Aluminum Fluoride	300	150	Bromoform	212	100	
	Aluminum Hydroxide	300	150	m-Bromotoluene	212	100	
	Aluminum Nitrate	300	150	Butadiene	250	120	
	Aluminum Oxychloride	300	150	Butane	300	150	
	Aluminum Potassium Sulfate	300	150	Butanediol	275	135	
	Amino Acids (H ₂ O)	212	100	Butyl Acetate	230	110	
	Ammonia (Anhydrous)	300	150	Butyl Acrylate	230	110	
	Ammonia (Aqueous 30%)	230	110	n-Butyl Alcohol	300	150	
	Ammonium Bifluoride	300	150	sec-Butyl Alcohol	300	150	
	Ammonium Bromide (50%)	275	135	tert-Butyl Alcohol	300	150	
	Ammonium Carbonate	300	150	<u>n</u> -Butylamine	120	50	
	Ammonium Chloride	300	150		120		
				sec-Butylamine		50	
	Ammonium Dichromate	275	135	tert-Butylamine	120	50	
	Ammonium Fluoride	300	150	di- <u>n</u> -Butyl Amine	230	110	
	Ammonium Hydroxide	300	150	tri- <u>n</u> -Butyl Amine	230	110	
	Ammonium Nitrate (Conc.)	230	110	Butylene	300	150	
	Ammonium Perchlorate	275	135	Butyl Bromide	300	150	
	Ammonium Persulfate	150	65	Butyl Chloride	300	150	
	Ammonium Phosphate	300	150	<u>n</u> -Butyl Mercaptan	300	150	
	Ammonium Sulfate	300	150	Butyl Phenol	230	110	
	Ammonium Sulfide	300	150	Butyl Phthalate	150	65	
	Ammonium Thiocyanate	300	150	Butyraldehyde	212	100	
	Amyl Acetate	250	120	Butyric Acid	250	120	
	Amyl Alcohol	300	150	C Calcium Bisulfate	300	150	
	Amyl Chloride	300	150	Calcium Bisulfide	300	150	
	Aniline	230	110	Calcium Carbonate	300	150	
	Aniline Hydrochloride (10%)	150	65	Calcium Chlorate	300	150	
	Anthraquinone	275	135	Calcium Chloride	300	150	
	Anthraquinone-Sulfonic Acid	275	135	Calcium Hydroxide	300	150	
	Antimony Trichloride	212	100				
	Aqua Regia	212	100	Calcium Hypochlorite	300	150	
	Arsenic Acid	300	150	Calcium Nitrate	300	150	
				Calcium Oxide	275	135	
3	Barium Carbonate	300	150	Calcium Sulfate	300	150	
	Barium Chloride	300	150	Calcium Sulfide	250	120	
	Barium Hydroxide	300	150	Caprylic Acid	212	100	

Source: www.dupont.com. Rudolf Gutbrod GmbH has been a DuPont licensee in Germany since 1967

(continued)

Chemical compatibility – taking DuPont Teflon[®] ETFE as an example (based on tests of representative materials and engineering judgment)

The data is based on long-term experience and the results from the development department and is not binding.

Ch	emical	Maximu Temper °F		Chemical	Maximu Temper °F	
	Carbon Dioxide (Dry)	300	150	Diglycolic Acid	212	100
	Carbon Dioxide (Wet)	300	150	Diisobutyl Ketone	230	110
	Carbon Disulfide	150	65	Diisobutylene	275	135
	Carbon Monoxide	300	150	Dimethyl Formamide	250	120
	Carbon Tetrachloride	150	65	Dimethyl Phthalate	212	100
	Carbonic Acid	300	150	Dimethyl Sulfate	150	65
	Castor Oil	300	150	Dimethyl Sulfoxide	212	100
	Caustic Potash (10 and 50%)	212	100	Dimethylamine	120	50
	Caustic Soda (10 and 50%)	212	100	Dimethylaniline	275	135
	Cellosolve®	300	150	Dioctyl Phthalate	150	65
	Chloral Hydrate	212	100	p-Dioxane	150	65
	Chlorinated Brine	250	120	Diphenyl Ether	175	80
	Chlorinated Phenol	212	100	Divinyl Benzene	175	80
	Chlorine (Dry)	212	100	_ ·		
	Chlorine (Wet)	250	120	E Epichlorhydrin	150	65
	Chlorine Dioxide	250	120	Ethyl Acetate	150	65
	Chloroacetic Acid (50% H ₂ O)	230	110	Ethyl Acrylate	212	100
	Chlorobenzene	212	100	Ethyl Alcohol	300	150
	Chlorobenzyl Chloride	150	65	Ethyl Chloride	300	150
	Chloroform	212	100	Ethyl Chloroacetate	212	100
			65	Ethyl Cyanoacetate	212	100
	Chlorohydrin (Liquid) Chlorosulphonic Acid	150 75	25	Ethylacetoacetate	150	65
				Ethylamine	100	40
	Chromic Acid (50%)	150	65	Ethylene Bromide	300	150
	Chromic Chloride	212	100	Ethylene Chloride	300	150
	Chromyl Chloride	212	100	Ethylene Chlorohydrin	150	65
	Clorox Bleach Solution (5-1/2% Cl ₂)	212	100	Ethylene Diamine	120	50
	Coal Gas	212	100	Ethylene Glycol	300	150
	Copper Chloride	300	150	Ethylene Oxide	230	110
	Copper Cyanide	300	150	F Fatty Acids	300	150
	Copper Fluoride	300	150	Ferric Chloride (50% in H ₂ O)	300	150
	Copper Nitrate	300	150	Ferric Hydroxide	300	150
	Copper Sulfate	300	150	Ferric Nitrate	300	150
	Cresol	275	135		300	
	Cresylic Acid	275	135	Ferric Sulfate		150
	Crotonaldehyde	212	100	Ferrous Chloride	300 300	150
	Crude Oil	300	150	Ferrous Hydroxide		150
	Cyclohexane	300	150	Ferrous Nitrate Ferrous Sulfate	300	150
	Cyclohexanol	250	120		300	150
	Cyclohexanone	300	150	Fluorine (Gaseous)	100	40
D	DDT	212	100	Fluoroboric Acid	275	135
	Decalin	250	120	Fluosilicic Acid	275	135
	Decane	300	150	Formaldehyde (37% in H ₂ O)	230	110
	Dextrin	300	150	Formic Acid	275	135
	Diacetone Alcohol	212	100	FREON® 11	230	110
	1,2-Dibromopropane	200	95	FREON® 12	230	110
	Dibutyl Phthalate	150	65	FREON® 22	230	110
	Dichloroacetic Acid	150	65	Fuel Oil	300	150
	<u>o</u> -Dichlorobenzene	150	65	Fumaric Acid	200	95
	Dichloroethylene	150	65	Furane	150	65
	Dichloropropionic Acid	150	65	Furfural	212	100
	Diesel Fuels	300	150	G Gallic Acid	212	100
	Diethyl Benzene	275	135	Gas-Manufactured	300	150
	Diethyl Cellosolve	300	150	Gas-Natural	300	150
		212	100	Gasoline-Leaded	300	150
	Diethyl Ether	212	110	Gasoline—Sour	300	150
	Diethylamine Diethylene Triamine	230	100	Gasoline-Unleaded	300	150
			100		000	100

Source: www.dupont.com. Rudolf Gutbrod GmbH has been a DuPont licensee in Germany since 1967

(continued)

Chemical compatibility – taking DuPont Teflon[®] ETFE as an example (based on tests of representative materials and engineering judgment)

The data is based on long-term experience and the results from the development department and is not binding.

Ch	emical	Maximu Temper °F		Ch	emical	Maximum Use Temperature °F °C		
			-			-		
	Glycerol	300	150		Mercuric Cyanide	275	135	
	Glycol	275	135		Mercuric Nitrate	275	135	
	Glycolic Acid	250	120		Mercury	275	135	
н	Heptane	300	150		Methacrylic Acid	200	95	
•••	Hexane	300	150		Methane	250	120	
	Hydrazine	100	40	1	Methane Sulfonic Acid (50%)	230	110	
	Hydrazine Dihydrochloride	125	50		Methyl Alcohol	300	150	
	Hydriodic Acid	300	150	1	<u>n</u> -Methylaniline	250	120	
	Hydrobromic Acid (50%)	300	150	1	Methyl Benzoate	250	120	
	Hydrochloric Acid (20%)	300	150	1	Methyl Bromide	300	150	
	Hydrochloric Acid (Conc.)	300	150		Methyl Cellosolve®	300	150	
	Hydrochloric Acid (Gas)	300	150		Methyl Chloride	200	95	
	Hydrocyanic Acid	300	150	1	Methyl Chloroform	150	65	
	Hydrofluoric Acid (35%)	275	135	1	Methyl Chloromethyl Ether	175	80	
				1	Methyl Cyanoacetate	175	80	
	Hydrofluoric Acid (70%)	250	120	1	Methyl Ethyl Ketone	230	110	
	Hydrofluoric Acid (100%)	230	110	1	Methyl Isobutyl Ketone	230	110	
	Hydrofluorosilicic Acid	300	150	1	Methyl Methacrylate	175	80	
	Hydrogen	300	150	1	Methyl Salicylate	200	95	
	Hydrogen Cyanide	300	150	1	Methyl Sulfuric Acid	212	100	
	Hydrogen Peroxide (30%)	250	120	1	Methyl Trichlorosilane	200	95	
	Hydrogen Peroxide (90%)	150	65	1	Methylene Bromide	212	100	
	Hydrogen Phosphide	150	65	1	Methylene Chloride	212	100	
	Hydrogen Sulfide (Dry)	300	150	1	Methylene Iodide	212	100	
	Hydrogen Sulfide (Wet)	300	150		Mineral Oil	300	150	
	Hydroquinone	250	120		Monochlorobenzene	230	110	
	Hypochlorous Acid	300	150		Monoethanolamine	150	65	
L	Inert Gases	300	150		Morpholine	150	65	
	lodine (Dry)	230	110					
	lodine (Wet)	230	110	N	Naphtha	300	150	
	lodoform	230	110	1	Naphthalene	300	150	
	Isobutyl Alcohol	275	135	1	Nickel Chloride	300	150	
	Isopropylamine	120	50	1	Nickel Nitrate	300	150	
				1	Nickel Sulfate	300	150	
J	Jet Fuel—JP4	230	110	1	Nicotine	212	100	
	Jet Fuel—JP5	230	110	1	Nicotinic Acid	250	120	
L	Lactic Acid	250	120	1	Nitric Acid (50%)	221	105	
	Lard Oil	300	150	1	Nitric Acid (Conc. 70%)	248	120	
	Lauric Acid	250	120	1	Nitric Acid—Sulfuric Acid (50/50)	212	100	
	Lauryl Chloride	275	135	1	Nitrobenzene	300	150	
	Lauryl Sulfate	250	120		Nitrogen Dioxide	212	100	
	Lead Acetate	300	150		Nitrogen Gas	300	150	
	Linoleic Acid	275	135	1	Nitromethane	212	100	
	Linseed Oil	300	150	1	Nitrous Acid	212	100	
	Lithium Bromide (Saturated)	250	120	0	Octane	300	150	
	Lithium Hydroxide	300	150	Ĭ	Octene	300	150	
	Lubricating Oil	300	150	1	Oleic Acid	275	135	
N /I	U U			1	Oleum	120	50	
М	Magnesium Carbonate	300	150		Oxalic Acid	230	110	
	Magnesium Chloride	300	150			300		
	Magnesium Hydroxide	300	150		Oxygen		150	
	Magnesium Nitrate	300	150	_	Ozone (<1% in Air)	212	100	
	Magnesium Sulfate	300	150	P	Palmitic Acid	275	135	
	Maleic Acid	275	135		Perchlorethylene	275	135	
	Maleic Anhydride	200	95		Perchloric Acid (10%)	230	110	
	Malic Acid	275	135		Perchloric Acid (72%)	150	65	
	Mercuric Chloride	275	135	1	Petrolatum	300	150	

Chemical compatibility – taking DuPont Teflon[®] ETFE as an example (based on tests of representative materials and engineering judgment)

The data is based on long-term experience and the results from the development department and is not binding.

emical	Maximu Tempe °F		Chemical	Maximum Use Temperature °F °C		
Petroleum	300	150	Silicon Tetrachloride	250	120	
Petroleum Ether	212	100	Silver Chloride	300	150	
Phenol (10%)	230	110	Silver Cyanide	300	150	
Phenol (100%)	212	100	Silver Nitrate	300	150	
Phenolsulfonic Acid	212	100	Sodium Acetate	300	150	
Phenylhydrazine	212	100	Sodium Benzene-Sulfonate	300	150	
Phenylhydrazine Hydrochloride	212	100	Sodium Benzoate	300	150	
<u>o</u> -Phenylphenol	212	100	Sodium Bicarbonate	300	15	
Phosgene	212	100	Sodium Bisulfate	300	15	
Phosphoric Acid (30%)	300	150	Sodium Bisulfite	300	15	
Phosphoric Acid (85%)	275	135	Sodium Borate	212	10	
Phosphorus Oxychloride	221	100	Sodium Bromide	300	15	
Phosphorus Pentachloride	212	100	Sodium Carbonate	300	15	
Phosphorus Pentoxide	230	110	Sodium Chlorate	300	15	
Phosphorus Trichloride	250	120	Sodium Chloride	300	15	
Phthalic Acid	212	100	Sodium Chromate	300	15	
Phthalic Anhydride	212	100	Sodium Cyanide	300	15	
Picric Acid	125	50	Sodium Dichromate (Alkaline)	212	10	
Polyvinyl Acetate	300	150	Sodium Dichronate (Alkaine) Sodium Ferricyanide	300	15	
	300	150		300		
Polyvinyl Alcohol			Sodium Ferrocyanide		15	
Potassium Aluminum Chloride	300	150	Sodium Fluoride	300	15	
Potassium Aluminum Sulfate (50%)	300	150	Sodium Glutamate	275	13	
Potassium Bicarbonate	300	150	Sodium Hydroxide (10%)	230	11	
Potassium Borate	300	150	Sodium Hydroxide (50%)	230	11	
Potassium Bromate	300	150	Sodium Hypochlorite	300	15	
Potassium Bromide	300	150	Sodium Hyposulfite	300	15	
Potassium Carbonate	300	150	Sodium Iodide	300	15	
Potassium Chlorate	300	150	Sodium Lignosulfonate	300	15	
Potassium Chloride	300	150	Sodium Metasilicate	300	15	
Potassium Chromate	300	150	Sodium Nitrate	300	15	
Potassium Cyanide	300	150	Sodium Nitrite	300	15	
Potassium Dichromate	300	150	Sodium Perborate	212	10	
Potassium Ferrocyanide	300	150	Sodium Perchlorate	150	6	
Potassium Fluoride	300	150	Sodium Peroxide	300	15	
Potassium Hydroxide (50%)	212	100	Sodium Persulfate	175	8	
Potassium Hypochlorite	275	135	Sodium Phosphate	300	15	
Potassium Nitrate	300	150	Sodium Silicate	300	15	
Potassium Perborate	275	135	Sodium Silicofluoride	300	15	
Potassium Perchlorate	212	100	Sodium Sulfate	300	15	
Potassium Permanganate	300	150	Sodium Sulfide	300	15	
Potassium Persulfate	150	65	Sodium Sulfite	300	15	
Potassium Sulfate	300	150	Sodium Thiosulfate	300	15	
Potassium Sulfide	300	150	Sorbic Acid	275	13	
Propane	275	135	Sour Crude Oil	300	15	
Propionic Acid	212	100	Stannic Chloride	300	15	
Propyl Alcohol	300	150	Stannous Chloride	300	15	
Propylene Dibromide	212	100	Stannous Fluoride	250	12	
Propylene Dichloride	212	100	Stearic Acid	300	15	
Propylene Glycol Methyl Ether	212	100	Stoddard's Solvent	275	13	
Propylene Oxide	150	65	Styrene Monomer	212	10	
Pyridine	150	65	Succinic Acid	275	13	
Pyrogallol	150	65	Sulfamic Acid	212	10	
, .			Sulfur (Molten)	250	12	
Salicylaldehyde	212	100	Sulfur Dioxide	230	11	
Salicylic Acid	250	120	Sulfur Trioxide (Liquid)	75	2	
Salt Brine	300	150	Sulfuric Acid (60%)	300	15	
Sea Water	300	150		500		

Chemical compatibility – taking DuPont Teflon[®] ETFE as an example (based on tests of representative materials and engineering judgment)

The data is based on long-term experience and the results from the development department and is not binding.

Chemical	Maximu Tempe °F		Chemical	Maximu Tempe °F	
Chemical Sulfuric Acid (Conc.) Sulfuric Acid (Fuming—Oleum) Sulfurous Acid T Tall Oil Tannic Acid Tartaric Acid 2,3,4,6-Tetrachlorophenol Tetraethyl Lead Tetrahydrofuran Tetramethyl Ammonium Hydroxide (50%) Thionyl Chloride Tin Tetrachloride Titanium Dioxide Titanium Tetrachloride Toluene Tributyl Phosphate Trichloracetic Acid Trichloroethylene	°F 300 120 230 300 275 275 212 300 212 212 230 300 212 250 150 212 275	°C 150 50 110 150 135 135 100 150 100 100 100 100 100 10	 Chemical U UDMH-Hydrazine (50/50) Urea (50% H₂O) V Varsol Vinyl Acetate Vinyl Chloride (Monomer) W Water Water Sewage Wax X Xylene Z Zinc Acetate Zinc Acetate Zinc Chloride Zinc Hydrosulfite (10%) Zinc Nitrate Zinc Sulfate Zinc Sulfate Zinc Sulfide PLATING SOLUTIONS Brass 	°F 120 275 275 275 150 300 275 300 250 300 250 300 250 300 300 300 300 300 300 300	°C 50 135 135 135 150 120 120 120 150 150 150 150 150 150 150 15
Trichloromethane 2,4,5-Trichlorophenol Triethylamine Trisodium Phosphate Turpentine	212 212 230 275 275	100 100 110 135 135	Cadmium Chrome Copper Gold	275 275 275 275 275	135 135 135 135

Representative Compatibility Data

The test results shown in **Table 2** represent the tensile strength, elongation and weight changes after exposures at indicated temperatures.

Table 2

Actual laboratory tests on chemical compatibility – taking DuPont Teflon[®] ETFE as an example - with representative chemicals

The data is based on long-term experience and the results from the development department and is not binding.

		iling	Te				l Propertie	
Chemical	°F	oint °C	Tempe °F	°C	Days	Tensile Strength	Elong.	Weight Gain
Acid/Anhydrides								
Acetic Acid (Glacial)	244	118	244	118	7	82	80	3.4
Acetic Anhydride	282	139	282	139	7	100	100	0
Trichloroacetic Acid	384	196	212	100	7	90	70	0
Aliphatic Hydrocarbons								
Mineral Oil	_	_	356	180	7	90	60	0
Naphtha	_	_	212	100	7	100	100	0.5
Aromatic Hydrocarbons								
Benzene	176	80	176	80	7	100	100	0
Toluene	230	110	230	110	7	_		_
Functional Aromatics								
O-Cresol	376	191	356	180	7	100	100	0
Amines								
Aniline	365	185	248	120	7	81	99	2.7
Aniline	365	185	248	120	30	93	82	_
Aniline	365	185	356	180	7	95	90	_
N,N-Dimethylaniline	374	190	248	120	7	82	97	_
N-Methylaniline	383	195	248	120	7	85	95	_
N-Methylaniline	383	195	248	120	30	100	100	_
n-Butylamine	172	78	172	78	7	71	73	4.4
Di-n-Butylamine	318	159	248	120	7	81	96	_
Di-n-Butylamine	318	159	248	120	30	100	100	_
Di-n-Butylamine	318	159	320	160	7	55	75	_
Tri-n-Butylamine	421	216	248	120	7	81	80	_
Tri-n-Butylamine	421	216	248	120	30	100	100	_
Pyridine	240	116	240	116	7	100	100	1.5
Chlorinated Solvents								
Carbon Tetrachloride	172	78	172	78	7	90	80	4.5
Chloroform	144	62	142	61	7	85	100	4.0
Dichloroethylene	170	77	90	32	7	95	100	2.8
FREON® 113	115	46	115	46	7	100	100	0.8
Methylene Chloride	104	40	104	40	7	85	85	0
Ethers								
Tetrahydrofuran	151	66	151	66	7	86	93	3.5
Aldehyde/Ketones								
Acetone	132	56	132	56	7	80	83	4.1
Acetophenone	394	201	356	180	7	80	80	1.5
Cyclohexanone	312	156	312	156	7	90	85	0
Methyl Ethyl Ketone	176	80	176	80	7	100	100	0

Actual laboratory tests on chemical compatibility – taking DuPont Teflon[®] ETFE as an example - with representative chemicals

The data is based on long-term experience and the results from the development department and is not binding.

		ling	Test Temperature			Retained I	Propertie	
Chemical	۴	oint °C	°F	°C	Days	Tensile Strength	Elong.	Weight Gain
Esters								
n-Butyl Acetate	260	127	260	127	7	80	60	0
Ethyl Acetate	170	77	170	77	7	85	60	0
Polymer Solvents								
Dimethylformamide	309	154	194	90	7	100	100	1.5
Dimethylformamide	309	154	248	120	7	76	92	5.5
Dimethylsulfoxide	373	189	194	90	7	95	90	1.5
Other Organics								
Benzoyl Chloride	387	197	248	120	7	94	95	_
Benzoyl Chloride	387	197	248	120	30	100	100	_
Benzyl Alcohol	401	205	248	120	7	97	90	_
Decalin	374	190	248	120	7	89	95	_
Phthaloyl Chloride	529	276	248	120	30	100	100	_
-	020	210	240	120	00	100	100	
Acids Aqua Regia	_	_	194	90	*	93	89	0.2
Chromic	257	125	257	125	7	66	25	0.2
Hydrobromic (Conc)	257	125	257	125	7	100	100	_
Hydrochloric (Conc)	223	106	73	23	7	100	90	0
Hydrochloric (Conc)	223	106	223	106	7	96	100	0.1
			73	23	7	90 97	95	0.1
Hydrofluoric (Conc)	 212	100	212	100	14	100	100	
Nitric-25%	212	105	212	105	14	87	81	_
Nitric - 50%								
Nitric 70% (Conc)	248	120	73	23	105	100	100	0.5
Nitric-70% (Conc)	248	120	140	60	53	100	100	_
Nitric-70% (Conc)	248	120	248	120	2	72	91	_
Nitric-70% (Conc)	248	120	248	120	3	58	5	_
Nitric-70% (Conc)	248	120	248	120	7	0	0	_
Phosphoric (Conc)	—	—	212	100	7			_
Phosphoric (Conc)	_	_	248	120	7	94	93	0
Sulfuric (Conc)	—	—	212	100	7	100	100	0
Sulfuric (Conc)	—	—	248	120	7	98	95	0
Sulfuric (Conc)	_	_	302	150		98	90	0
Halogens	100	50	70	00	-	00	00	1.0
Bromine (Anhy)	138	59	73	23	7	90	90	1.2
Bromine (Anhy)	138	59	135	57	7	99	100	_
Bromine (Anhy)	138	59	135	57	30	94	93	3.4
Chlorine (Anhy)	-	—	248	120	7	85	84	7
Bases					_			-
Ammonium Hydroxide	_	_	150	66	7	97	97	0
Potassium Hydroxide			010	400	-	100	400	~
(20%)	_	_	212	100	7	100	100	0
Sodium Hydroxide			<u> </u>	100	_	~ .	~~	
(50%)	_	_	248	120	7	94	80	0.2
Peroxides								
Hydrogen Peroxide			=0	00	-	~~~	~~~	~
(30%)	_	—	73	23	7	99	98	0

*Exposed for 6 hours.

(continued)

NOTES: Change in properties -15% is considered insignificant. Samples were 10–15 mil microtensile bars. TS/E and wt. gain determined within 24 hours after removal from exposure media.

Actual laboratory tests on chemical compatibility – taking DuPont Teflon[®] ETFE as an example - with representative chemicals

The data is based on long-term experience and the results from the development department and is not binding.

	Boiling Point		Test Temperature			Retained Properties—% Tensile Weigh		
Chemical	°F	°C	°F	°C	Days	Strength	Elong.	
Salt-Metal Etchants								
Ferric Chloride			0.40	100	_		~ -	~
(25%)	220	104	212	100	7	95	95	0
Zinc Chloride					_			
(25%)	220	104	212	100	7	100	100	0
Other Inorganics								
Phosphoric Oxychloride	220	104	220	104	7	100	100	_
Phosphoric Trichloride	167	75	167	75	7	100	98	_
Silicon Tetrachloride	140	60	140	60	7	100	100	_
Sulfuryl Chloride	115	68	155	68	7	86	100	8
Water	212	100	212	100	7	100	100	0
Miscellaneous								
A-20 Stripper Solution	_	_	284	140	7	90	90	_
Aerosafe	_	_	300	149	7	92	93	3.9
Skydrol	_	_	300	149	7	100	95	3.0

*Exposed for 6 hours.

NOTES: Change in properties -15% is considered insignificant. Samples were 10–15 mil microtensile bars. TS/E and wt. gain determined within 24 hours after removal from exposure media.

RUDOLF GUTBROD GmbH

Im Schwöllbogen 10 72581 Dettingen/Erms Germany Tel.: +49(0)71 23 - 97 35 - 0 Fax: +49(0)71 23 - 97 35 - 30 www.gutbrod-ptfe.de info@gutbrod-ptfe.de